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For a given total counting time in a diffractometer experiment the variance (or square of the standard 
deviation) of the estimated integrated intensity of a reflexion is least when the counting time at each 
point is proportional to the square root of the intensity at that point. If the ratio of the peak to back- 
ground intensity does not exceed 10 and data points are equidistant, a constant counting time at each 
point gives a variance not more than 1.4 times the minimum possible value. For greater peak/background 
ratios a further improvement in variance is achieved. The effect of subtracting off the background 
intensity is equivalent to regarding the line as extended, at background intensity, over a further range 
equal to the range over which measurements are made. Full advantage of the optimum choice can be 
obtained by computer control of the diffractometer, and then less time is required for collection of data 
of the same accuracy. 

1. Introduction 

A diffractometer is normally used for the accurate ex- 
perimental determination of X-ray line profiles. In such 
an experiment the X-ray intensities r# are estimated at 
a series of points xr across the line profile by measur- 
ing the number of counts N, obtained in time T, at 
each of these points. This paper is concerned with the 
problem of choosing the individual counting times T, 
so that, for a given total counting time T=  Y~T,, the 
greatest possible accuracy (minimum variance due to 
counting statistics) is obtained for the estimated in- 
tegrated intensity of the reflexion. Furthermore, a 
simple but practical approximation to the optimum 
choice is indicated for the case of a manually controlled 
diffractometer. With full computer control there is 
every reason to take full advantage of the optimum 
choice. 

When the estimates y ,=N/T ,  of the intensities r# 
have been determined the integrated intensity is es- 
timated by means of some approximate integration for- 
mula of the type 

I=~ ydx~_ ~, ~z,yr , (1.1) 
J 

where the er are fixed constants determined only by 
the xr and the nature of the approximation. The choice 
of this integration formula will not be considered here 
but it will be assumed that it has been so chosen that 
if the values of r/, were known exactly the formula 
would approximate the true value of the integral with 
sufficient accuracy. Within the limitations of this ac- 
curacy the final results obtained in this paper for the 
error in the estimated value of the integrated intensity 
are independent of the actual integration formula used; 

although, in practice, a trapezoidal formula is often 
the most convenient. 

It has been assumed implicitly above that the inten- 
sity r# decreases to zero as one moves away from the 
centre of the reflexion. However, in practice, this does 
not occur because of the presence of a background in- 
tensity; this background intensity will be assumed to 
be constant. Thus, the background intensity, integrated 
over the range of the experimental observations, must 
be subtracted from the integrated intensity obtained 
from the actual measurements. Since the estimate of 
the background intensity is subject to error, it is clear 
that the accuracy of the final result will depend, for a 
given total counting time, on a suitable balance be- 
tween the times spent counting on the reflexion and 
that spent counting the background. The optimum 
balance is derived below. 

In principle, the presence of the constant back- 
ground has another effect on the accuracy of the final 
results for reflexions with very extended tails such as 
arise from heavily worked metals, for the final result 
is obtained by subtracting the integral of the (constant) 
background from the integral of the measured inten- 
sities. Thus, as the range of the measurements in- 
creases the final result is obtained as the difference be- 
tween two quantities which are getting larger and larger 
and so the accuracy will ultimately decrease. There- 
fore, there is an optimum point at which measurements 
should be stopped even though the true intensity of 
the reflexion may not be quite zero at this stopping 
point. This problem is also considered below and it is 
shown that the optimum stopping point is usually ex- 
perimentally inaccessible. 

There are two other common procedures which will 
affect the final accuracy of the results. These are the 
removal from the actual measurements of the effects 
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of one of the components of a doublet in the incident 
radiation and the removal of the effect of instrumental 
broadening. The problems raised by these two proce- 
dures are not discussed in detail in the present paper. 

Instrumental broadening is sometimes removed by 
the use of the Fourier transform of the profile. Now 
this transform is obtained essentially by multiplying 
the intensity by a factor sin ux or cos ux and integrat- 
ing over all values of x for which the intensity is not 
zero. Since sin ux and cos ux are numerically less than 
or equal to unity, it is clear that the error in the Fourier 
transform is always numerically less than or equal to 
the error in the integrated intensity. Thus, any experi- 
mental design which tends to minimize the error in the 
integrated intensity will equally tend to minimize this 
simple upper bound for the error in the Fourier trans- 
form apart, of course, from any error due to the in- 
adequacy of the numerical integration formula which 
may be used. 

2. Minimum variance of an integral 

At each point of observation x, a count N, is obtained 
in time T~ and the square of the standard deviation 
or variance of such a count is equal to its expected 
value 

V(N,)=E(N,)=r#T, . (2.1) 

Then, the estimated intensity is 

yr=N,/T,  , (2.2) 
and its variance 

V(y,)=tI,/Tr . (2.3) 

Hence, since the observations at each point are in- 
dependent, the variance of the sum S in (1.1) is given by 

2 V(S)= V( ~ c~,y,)= ~ c(, r#/T~. (2.4) 

The problem is to minimize V(S) subject to the con- 
dition that the total time of observation T is constant. 
This can be done by the following device. Since 

V= Z T,,  (2.5) 

equation (2.4) can be written 

V(S)= ~ ~q,/T~. ~ T~/T. (2.6) 

Now applying Cauchy's inequality* (Hardy, Little- 
wood & P61ya, 1934; Theorem 7, p. 16) to the product 
of sums on the right of (2.6) it follows that 

V(S) >_ ( ~  ~l~/z)2/T, (2.7) 

with equality, if and only if 

T~ = 2~r/~/2 . (2.8) 

Here, 2 is a constant of proportionality determined by 
the condition that ~ T , =  T; from which it follows that 

2 =  T~ ~ ~,tr-..~/z . (2.9) 

* The result follows from the identity 

Z ~ Y. b~-(~ ~,~)' =.~ ~ ~ (o~a~-,,b~) ~. 

Thus, the choice of 7", proportional to OCr~/2 gives V(S) 
a minimum value which cannot be improved since it 
is independent of Tr. 

Note that since the sum appearing in (2.7) and (2.9) 
approximates to 5 r/~/2 dx the results arc independent, 
to this order of approximation, of the integration for- 
mula used. 

3. The effect of the background 

For a reflexion with a finite range Xo i.e. having zero 
true intensity outside a range of length 3(0 the back- 
ground intensity fl can be estimated as b=Nb/Tb from 
a count Nb obtained in time Tb at some point outside 
this range. In this case the above treatment can be 
generalized to account for the effect of subtracting 
the background intensity. The estimate of the inte- 
grated intensity will be 

1= ~ o~,y~-bX, (3.1) 
r = l  

where X (>_ X0) is the range over which observations 
are made. 

Then, 

V(I )=  ~ ~Z~qr/T r+flXz/Tb, (3.2) 
r = l  

and it is clear that for any given choice of c~r, T, and 
Tb V(1) increases with X. Thus, X should be chosen 
as small as possible, i.e. X= Xo. 

Writing r/,+~=p, 7,+a =X,  T,,+I = Tb, equation (3.2) 
becomes identical in form with equation (2.4) so that 
the previous results apply. In particular, the minimum 
possible variance (2.7) can be written, on replacing the 
sum by an integral, as 

Vmin=Min g(1)=  ~/1/2 dx+13mX /T .  (3.3) 
,JO 

For a fixed X this variance is inversely proportional to 
T and it is also proportional to the incident intensity 
of the X-ray beam I0, say, because r/ is proportional 
to I0. However, the integrated intensity, as here defined, 
is also proportional to I0 so that the fractional accuracy 
(coefficient of variation) that is achieved is propor- 
tional to (1~loT) 1/2. This last statement is true what- 
ever the choice of the Tr but by choosing T, propor- 
tional to c~r r/¢/2 the constant of proportionality is made 
a minimum. 

Since Y c~s = X(s = 1, n), the correction for background 
can be written -~,c~sbs with variance fl~c~Z~/Ts appro- 
priate to a series of fictitious observations b~ of the 
background fl taken over a range X with counting 
times Ts. Now the optimum choice for T~ given by 
(2.8) is T~=p~  so that T b = ~ , T s = / u ~  and this vari- 
ance becomes f l (~)2/Tb=flXZ/Tb in agreement with 
(3.2). Thus, provided T~ is chosen proportional to ~ 
in the background region, the variance (3.2) of the 
final result is the same as though the tail of  the profile 
were extended a distance X at height 13 and the inte- 
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grated intensity of this extended line were being esti- 
mated. 

4. Practical considerations 

To see what advantage may be obtained from an op- 
timum choice, the variance Vm~, will be compared with 
the (greater) variance V~ obtained by choosing 7", pro- 
portional to ~,. For equally spaced data with a trapezo- 
idal integration formula the latter choice implies T, 
constant (with the exception of the end points) and 
that half the total time is spent counting the back- 
ground alone ( ~ , + ~ = ~ = X ) .  It will be shown that 
for plausible line shapes and when no correction for 
background is made the ratio V1/Vm~. is less than about 
1-4 provided the ratio of the peak intensity to the back- 
ground is less than 25; if the latter ratio is less than 
10 the stated limit for VJVm,, holds for any profile 
whatsoever. Thus, for most profiles and a manually 
controlled diffractometer a two-stage choice of T, with 
changes in T, whenever the intensity drops by a factor 
of about 25 will give a suitable compromise between 
simplicity of experimental design and a reasonable ap- 
proximation to the greatest possible accuracy. On the 
other hand, with computer control it is quite easy to 
change T~ at every point and so collect data of the 
same accuracy in up to 40 % less time. 

The origin of x will be taken at the peak of the 
profile and the units of x will be taken such that the 
half width of the profile at half true-peak height is 
unity. In these units the accessible range of x will not 
usually be greater than + 15. In accordance with the 
remark at the end of the last section the effect of the 
background correction is equivalent to considering an 
extended line. Thus, no further attention need be ex- 
plicity paid to this matter. 

It follows from (2.4) and (2.7), on replacing sums 
by integrals, that for half the profile 

dx,[ f0>'  ax] 
Now if ~ is the true line intensity so that r /=¢+fl ,  it 
follows on differentiating with respect to fl and apply- 
ing Tchebychef's inequality (Hardy, Littlewood & 
Pdlya, 1934; Theorem 43, p. 43) that V~/Vm~n de- 
creases as the background increases. Thus, V~/Vmi. will 
be overestimated if, as in the comparisons in Table 1, 
r/is replaced by ¢. 

Table 1. Comparison of V1/Vmi. for various profiles 

True profile X Vt/ Vmi,, 
Gaussian exp - ½ x  2 3 1-20 
Cauchy or 1/(1 +x  z) 

Lorentzian 3 1.13 
5 1.28 

10 1.63 
20 2.23 

Linear 1 - x / X  1.125 
Inverse square 1Ix 2 / 5 1"24 
Tail region 1 < x < X  ~ 10 1"53 

The results in Table 1 show that provided T, is con- 
stant in regions where the intensity drops by less than 
a factor 25 then V~/Vmi, for the corresponding region 
is less than about 1.3. Thus, with a manually con- 
trolled diffractometer, a two-stage choice for the T, 
will cope with profiles having a peak/background ratio 
of at least 500 and probably 1000. The point at which 
the change in counting time should be reduced is at 
X1=5 and thereafter the inverse square law result 
shows that the new value of T, can be used up to at 
least X =  25 which should be sufficient to cope with an 
extended profile. 

There remains the problem of determining the fac- 
tor by which the T, used in the peak region should be 
reduced for the tail region and also the question of 
when to use a two-stage design as opposed to a single 
counting time. 

Denoting the integral of r/ over the relevant range 
by I, where the subscripts 1, 2 denote values in the 
peak and tail regions respectively, it follows from (2.4) 
and (2.8) that since 7'1)(1 + TzXz is constant, the best 
choice of TI/Tz is 

TdT2 = (I, IX , ) ' / ' 7 (& IX, )  '/2, (4.2) 
where X=X~+Xz and a trapezoidal integration for- 
mula has been assumed. The corresponding generaliza- 
tion of (4.1) is 

-[-(I2X2)1/2]/1~/~1/2 d x .  (4.3) ( W21Wmin) l/2 --- [(IiX'l) 1/z 

and this is always less than the greater of the two ratios 

f X1 
txl  t12 ClX (llXx)'121 ~ ~1112 dx and (I2X2)112/,)X~ z . Note that the 

,/0 
value of X2 must include the addition due to the exten- 
sion of the profile. 

Now for any profile for which the intensity always 
lies between the peak intensity r/p and the background 
intensity ,6 the ratio 

V11Vmi,, <[l  +(rlp/fl)l/2]214(rlp/fl)l/2. (4.4) 
(Hardy, Littlewood & P61ya, 1934; theorem 71, p. 
62). Thus, for r/p/fl=10, Vx/Vmi.=l'37; the limiting 
value of V1/Vmi. is achieved for a profile which ex- 
tends at a constant intensity 1//, out to x =  1 and there- 
after has a constant tail intensity fl for a further distance 
(~p/fl)l/2. For Jip/fl=25 the above limit is 1.80 while 
for the same value of the ratio r/p//~ a Cauchy line gives 
a maximum of 1.34 when X is about 15 and a Gaussian 
line gives a maximum of 1.56 when X is about 10. It 
would seem then that changing from a one to a two- 
stage design for Jlp/t~> 10 should, in practice, give 
V~/ Vmin < l " 3. 

5. The effect of extended tails 

For a profile with extended tails, and possibly an in- 
finite range, measurements can of necessity be made 
only over a finite range X. If X is too small there will 
be a large error arising from the neglect of the residual 
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tail area outside this range. On the other hand, if X 
is too large (3.2) indicates that there will again be a 
large error arising from the subtraction of the back- 
ground. Thus, there will be an optimum stopping 
point. Extended profiles also present another difficulty; 
the determination of the background in the presence 
of a small but not necessarily negligible intensity of the 
true profile at the point of measurement. For the mo- 
ment it will be assumed that the background can be in- 
dependently determined. 

A rough way of estimating the optimum stopping 
point is to minimize, for variation of X, the mean- 
square error, i.e. the sum of the error variance (3.3) 
and the square of the neglected residual tail area (the 
bias). Writing 1/= ~+fl  and assuming that lift < 1 in the 
residual-tail region and also that the residual-tail area 
is small compared with the integral of the background 
over the range of measurement, it follows that the ex- 
pression to be minimized is 

where 
i 

oo 
V~_(A+2~u2X)2/T+[  (dx ]  2, (5.1) 

X 

Note that A increases as the background decreases rela- 
tive to the peak intensity of the line. 

For a Cauchy line profile 

( =  k/(1 + x2), (5.3) 

A = [ k / ( k  + f l ) ' /2 ]D[k ' /2 / (k  +/~)I/2] , (5.4) 

where D is the complete elliptic integral tabulated by 
Jahnke & Emde (1938).* Inspection of these tables 
shows that for k/fl< 1000, A is within a factor of 3 of 
the value A--2k u2. Now if, as will usually be the case, 
2fll/2Xopt>~A, the optimum stopping point, found by 
equating the derivative of (5.1) with respect to X to 
zero, is given approximately by 

( X o p t )  4 = (k/fl)ZflT/4. ( 5 . 5 )  

Thus, the condition 2flx/2Xopt>~A becomes 4flk2T>~A 4 
or, putting A = 2k 1/2, 

flT>~4 . (5.6) 

* The parameter denoted by k 2 in these tables is equal to 
k/(k+fl) in the present notation. 

However, f iT is the expected number of counts which 
would be obtained if the background were counted for 
the whole time T and will usually be greater than 104. 
Thus for k/fl > 2, Xopt > 10. 

The conclusion is that, except possibly for lines with 
very low peak intensities relative to the background, 
the optimum stopping point is experimentally inacces- 
sible and so counting should continue as far out into 
the tails as possible. 

When the line has extended tails and the background 
has to be determined in the presence of a non-negligible 
intensity from the line the problem is more complex. 
If it can be assumed that in the tail region the true in- 
tensity is given by 

rl = fl + ~cf (x) , (5.7) 

wheref(x) is of known functional form, then the values 
of fl and x could be estimated from observations made 
in the tail region by, say, the method of least-squares. 
Then, the estimate of the integrated intensity of the 
line would be 

I= ~ o ~ , y , - b X + k  I~ f ( x )  dx  . (5.8) 

Since the estimated values of b, k and the y, used in 
determining them will be correlated the exact condi- 
tions for the optimum experimental design will not be 
very simple and the matter will not be considered 
further here. 

This paper is a revision of a draft manuscript nearly 
15 years old and written when the authors were located 
respectively in the C.S.I.R.O. Divisions of Tribophys- 
ics and of Mathematical Statistics. It was not published 
then because it did not seem that real advantages for 
data collection would accrue without automatic con- 
trol of the diffractometer. We wish to thank Dr R. C. 
G. Killean for drawing our attention to the relevance 
of our results to data collection with modern instru- 
mentation. We realise, of course, that a great deal of 
work has been carried out on these problems in the 
intervening years, and our omission of references to it 
does not imply that we think it unimportant.  

References 

HARDY, G. H., LITTLEWOOD, J. E. & P6LYA, G. (1934). 
Inequalities. Cambridge Univ. Press. 

JAHNKE, P. R. E. & EMDE, F. (1938). Tables of  Functions, 
3rd ed., p. 83. New York: Stechert. 


